PROCESS MODELING AND

409349 **Item Bank Name** SIMULATION/B.E./CHEMICAL/2015/SEM-II

403343	item bank manie simo	EATTON, D.E., CITEIVIICAL, 2015	/ JE:111 11	
Item Text	Option Text 1	Option Text 2	Option Text 3	Option Text 4
Transport laws for momentum transfer is	Fourier,s law	Ficks law	Newton,s law	Einstein,s Law
Transport laws are for	Molecular transport	Overall transport	Bulk transport	Turbulent transport
.Find out the dimensionless quantity	Pressure	Reynoldsnumber	viscosity	density
We don't use volume balance in a chemical	Mass is not conserved in a	Volume is not conserved in		
process because	process	a process	Both a and b	Neither a nor b
.Material balance equation can be			Moles of a	
applied to	Total mass	Mass of a component	component	All of the mentioned
.Material balance equation cannot be			Moles of an atomic	
applied to	Total moles	Mass of an atomic species	species	All of the mentioned
A system that does not have material			Steady state	
crossing the system boundary is called	Closed System	Open System	system	None of the mentioned
.In open system the material crosses the				
boundary.			Correct for closed	
The above given statement is	Incorrect	Correct	system	None of the mentioned
A system in which all conditions remain			Steady state	
constant with time is called	Open system	Closed system	system	Dynamic system
A system in which conditions change with			Steady state	
time is called	Open system	Closed system	system	Dynamic system
.Gibbs phase rule for general system is	P+F=C-1	P+F=C+1	P+F=C-2	P+F=C+2
The pressure drop in a packed bed is			Parabolically	
for a given length.	Constant	Exponentially Increasing	Increasing	Linearly Increasing
			Overall heat	
The Ergun equation is used to calculate the	Pressure drop in packed	Reynolds number in packed	transfer	
	beds	columns	coefficients	Number of particles
In the Ergun equation, what do you				
understand by the term X? $f = \Delta P / L$				
X/ρϑS2(∈3/(1-∈))	Diameter of the tube	Diameter of the pellets	Effective diameter	Equivalent diameter of the tube

In the Formula for porosity, what is the				
meaning of the term V? \emptyset = VVT	Volume of Void	Volume of Pure Solid	Total Volume	Volume of the tube material
The substance used in fluidised bed is				
	Same as Packed Bed	Powdered Substance	Large balls	Finely divided Solid material
At fluidisation, the upward drag force is				
the weight of the particles	Equal to	Slightly higher than	Less than	Negligible to
The pressure drop in fluidised bed on				
fluidisation with increasing	1	1		1
flow rate.	Remains same	Linearly increases	Linearly decreases	Remains zero
.At fluidisation, the temperature of the bed				
is	Constant but non-uniform	Same for fluid and particles	Non uniform	Increasing from the bottom
.At minimum fluidisation flow rate, the gas				
flow velocity is also known as	1	1		
of the pellets.	Superficial velocity	Terminal velocity	Average velocity	Transport velocity